Rogue wave modes for a derivative nonlinear Schrödinger model.

نویسندگان

  • Hiu Ning Chan
  • Kwok Wing Chow
  • David Jacob Kedziora
  • Roger Hamilton James Grimshaw
  • Edwin Ding
چکیده

Rogue waves in fluid dynamics and optical waveguides are unexpectedly large displacements from a background state, and occur in the nonlinear Schrödinger equation with positive linear dispersion in the regime of positive cubic nonlinearity. Rogue waves of a derivative nonlinear Schrödinger equation are calculated in this work as a long-wave limit of a breather (a pulsating mode), and can occur in the regime of negative cubic nonlinearity if a sufficiently strong self-steepening nonlinearity is also present. This critical magnitude is shown to be precisely the threshold for the onset of modulation instabilities of the background plane wave, providing a strong piece of evidence regarding the connection between a rogue wave and modulation instability. The maximum amplitude of the rogue wave is three times that of the background plane wave, a result identical to that of the Peregrine breather in the classical nonlinear Schrödinger equation model. This amplification ratio and the resulting spectral broadening arising from modulation instability correlate with recent experimental results of water waves. Numerical simulations in the regime of marginal stability are described.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical investigation of stability of breather-type solutions of the nonlinear Schrödinger equation

In this article we conduct a broad numerical investigation of stability of breather-type solutions of the nonlinear Schrödinger (NLS) equation, a widely used model of rogue wave generation and dynamics in deep water. NLS breathers rising over an unstable background state are frequently used to model rogue waves. However, the issue of whether these solutions are robust with respect to the kind o...

متن کامل

Rogue Wave Modes for the Long Wave–Short Wave Resonance Model

The long wave–short wave resonance model arises physically when the phase velocity of a long wave matches the group velocity of a short wave. It is a system of nonlinear evolution equations solvable by the Hirota bilinear method and also possesses a Lax pair formulation. ‘‘Rogue wave’’ modes, algebraically localized entities in both space and time, are constructed from the breathers by a singul...

متن کامل

Rogue Waves in Higher Order Nonlinear Schrödinger Models

We discuss physical and statistical properties of rogue wave generation in deep water from the perspective of the focusing Nonlinear Schrödinger equation and some of its higher order generalizations. Numerical investigations and analytical arguments based on the inverse spectral theory of the underlying integrable model, perturbation analysis, and statistical methods provide a coherent picture ...

متن کامل

Rogue waves, rational solitons and wave turbulence theory

Considering a simple one dimensional nonlinear Schrödinger optical model, we study the existence of rogue wave events in the highly incoherent state of the system and compare them with the recently identified hierarchy of rational soliton solutions. We show that rogue waves can emerge in the genuine turbulent regime and that their coherent deterministic description provided by the rational soli...

متن کامل

Advantages and limitations of the nonlinear Schrödinger equation in describing the evolution of nonlinear water-wave groups

The nonlinear Schrödinger (NLS) equation is a popular and relatively simple model used extensively to describe the evolution of nonlinear water-wave groups. It is often applied in relation to the appearance of extremely steep (freak, or rogue) waves in the ocean. The limits of the applicability of the NLS equation, and in particular the relevance of the model to rogue waves, are examined here o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 89 3  شماره 

صفحات  -

تاریخ انتشار 2014